362 research outputs found

    Near real-time monitoring of forest disturbance: a multi-sensor remote sensing approach and assessment framework

    Full text link
    Fast and accurate monitoring of tropical forest disturbance is essential for understanding current patterns of deforestation as well as helping eliminate illegal logging. This dissertation explores the use of data from different satellites for near real-time monitoring of forest disturbance in tropical forests, including: development of new monitoring methods; development of new assessment methods; and assessment of the performance and operational readiness of existing methods. Current methods for accuracy assessment of remote sensing products do not address the priority of near real-time monitoring of detecting disturbance events as early as possible. I introduce a new assessment framework for near real-time products that focuses on the timing and the minimum detectable size of disturbance events. The new framework reveals the relationship between change detection accuracy and the time needed to identify events. In regions that are frequently cloudy, near real-time monitoring using data from a single sensor is difficult. This study extends the work by Xin et al. (2013) and develops a new time series method (Fusion2) based on fusion of Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data. Results of three test sites in the Amazon Basin show that Fusion2 can detect 44.4% of the forest disturbance within 13 clear observations (82 days) after the initial disturbance. The smallest event detected by Fusion2 is 6.5 ha. Also, Fusion2 detects disturbance faster and has less commission error than more conventional methods. In a comparison of coarse resolution sensors, MODIS Terra and Aqua combined provides faster and more accurate detection of disturbance events than VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS single sensor data. The performance of near real-time monitoring using VIIRS is slightly worse than MODIS Terra but significantly better than MODIS Aqua. New monitoring methods developed in this dissertation provide forest protection organizations the capacity to monitor illegal logging events promptly. In the future, combining two Landsat and two Sentinel-2 satellites will provide global coverage at 30 m resolution every 4 days, and routine monitoring may be possible at high resolution. The methods and assessment framework developed in this dissertation are adaptable to newly available datasets

    Characterizing urban landscapes using fuzzy sets

    Get PDF
    Characterizing urban landscapes is important given the present and future projections of global population that favor urban growth. The definition of “urban” on a thematic map has proven to be problematic since urban areas are heterogeneous in terms of land use and land cover. Further, certain urban classes are inherently imprecise due to the difficulty in integrating various social and environmental inputs into a precise definition. Social components often include demographic patterns, transportation, building type and density while ecological components include soils, elevation, hydrology, climate, vegetation and tree cover. In this paper, we adopt a coupled human and natural system (CHANS) integrated scientific framework for characterizing urban landscapes. We implement the framework by adopting a fuzzy sets concept of “urban characterization” since fuzzy sets relate to classes of object with imprecise boundaries in which membership is a matter of degree. For dynamic mapping applications, user-defined classification schemes involving rules combining different social and ecological inputs can lead to a degree of quantification in class labeling varying from “highly urban” to “least urban”. A socio-economic perspective of urban may include threshold values for population and road network density while a more ecological perspective of urban may utilize the ratio of natural versus built area and percent forest cover. Threshold values are defined to derive the fuzzy rules of membership, in each case, and various combinations of rules offer a greater flexibility to characterize the many facets of the urban landscape. We illustrate the flexibility and utility of this fuzzy inference approach called the Fuzzy Urban Index for the Boston Metro region with five inputs and eighteen rules. The resulting classification map shows levels of fuzzy membership ranging from highly urban to least urban or rural in the Boston study region. We validate our approach using two experts assessing accuracy of the resulting fuzzy urban map. We discuss how our approach can be applied in other urban contexts with newly emerging descriptors of urban sustainability, urban ecology and urban metabolism.This research was partially supported by "Boston University Initiative on Cities Early Stage Urban Research Awards 2015-16" (Gopal & Phillips) and the Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. (Boston University Initiative on Cities Early Stage Urban Research Awards; Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University)https://doi.org/10.1016/j.compenvurbsys.2016.02.002Published versio

    An hourglass-free formulation for total Lagrangian smoothed particle hydrodynamics

    Full text link
    The total Lagrangian smoothed particle hydrodynamics (TL-SPH) for elastic solid dynamics suffers from hourglass modes which can grow and lead to the failure of simulation for problems with large deformation. To address this long-standing issue, we present an hourglass-free formulation based on volumetric-devioatric stress decomposition. Inspired by the fact that the artifact of nonphysical zigzag particle distribution induced by the hourglass modes is mainly characterized by shear deformation and the standard SPH discretization for the viscous term in the Navier-Stokes (NS) equation, the present formulation computes the action of shear stress directly through the Laplacian of displacement other than from the divergence of shear stress. A comprehensive set of challenging benchmark cases are simulated to demonstrate that, while improving accuracy and computational efficiency, the present formulation is able to eliminate the hourglass modes and achieves very good numerical stability with a single general effective parameter. In addition, the deformation of a practically relevant stent structure is simulated to demonstrate the potential of the present method in the field of biomechanics.Comment: 38 pages 21 figure

    Linear Evolutionary Algorithm

    Get PDF

    Evaluation of the inhibition potential of plumbagin against cytochrome P450 using LC-MS/MS and cocktail approach

    Get PDF
    Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a natural naphthoquinone compound isolated from roots of Plumbago zeylanica L., has drawn a lot of attention for its plenty of pharmacological properties including antidiabetes and anti-cancer. The aim of this study was to investigate the effects of plumbagin on CYP1A2, CYP2B1/6, CYP2C9/11, CYP2D1/6, CYP2E1 and CYP3A2/4 activities in human and rat liver and evaluate the potential herb-drug interactions using the cocktail approach. All CYP substrates and their metabolites were analyzed using high-performance liquid chromatography–tandem mass spectrometry (LC-MS/MS). Plumbagin presented non-time-dependent inhibition of CYP activities in both human and rat liver. In humans, plumbagin was not only a mixed inhibitor of CYP2B6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, but also a non-competitive inhibitor of CYP1A2, with K(i) values no more than 2.16 μM. In rats, the mixed inhibition of CYP1A2 and CYP2D1, and competitive inhibition for CYP2B1, CYP2C11 and CYP2E1 with K(i) values less than 9.93 μM were observed. In general, the relatively low K(i) values of plumbagin in humans would have a high potential to cause the toxicity and drug interactions involving CYP enzymes

    An explicit multi-time stepping algorithm for multi-time scale coupling problems in SPH

    Full text link
    Simulating physical problems involving multi-time scale coupling is challenging due to the need of solving these multi-time scale processes simultaneously. In response to this challenge, this paper proposed an explicit multi-time step algorithm coupled with a solid dynamic relaxation scheme. The explicit scheme simplifies the equation system in contrast to the implicit scheme, while the multi-time step algorithm allows the equations of different physical processes to be solved under different time step sizes. Furthermore, an implicit viscous damping relaxation technique is applied to significantly reduce computational iterations required to achieve equilibrium in the comparatively fast solid response process. To validate the accuracy and efficiency of the proposed algorithm, two distinct scenarios, i.e., a nonlinear hardening bar stretching and a fluid diffusion coupled with Nafion membrane flexure, are simulated. The results show good agreement with experimental data and results from other numerical methods, and the simulation time is reduced firstly by independently addressing different processes with the multi-time step algorithm and secondly decreasing solid dynamic relaxation time through the incorporation of damping techniques.Comment: 37 pages 20 figure

    Protective effects of salidroside on chronic heart failure in rats and the underlying mechanisms

    Get PDF
    The present study aimed to investigate the protective effects of salidroside on chronic heart failure (CHF) in rats and to explore the underlying mechanisms. One hundred SD rats were randomly divided into sham-operated, model, and low-, medium- and high-dose salidroside groups. The CHF model was established in later 4 groups. The later 3 groups were intragastrically administrated with 6, 12 and 24 mg/kg salidroside, respectively, once a day, for continuous 4 weeks. Finally, the serum levels of brain natriuretic peptide (BNP) and interleukin 6 (IL-6), cardiac function indexes, and expression levels of myocardial cysteinyl aspartate-specific proteinase (Caspase)-3, Caspase-9, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein were determined. Results showed that, after treatment, compared with model group, in high-dose salidroside group the heart function indexes were significantly improved (P < 0.05), the serum levels of BNP and IL-6 were significantly decreased (P < 0.05), the expression levels of myocardial Caspase-3, Caspase-9 and MMP-1 protein were significantly decreased (P < 0.05), and the expression level of TIMP-1 protein was significantly increased (P < 0.05). In conclusion, salidroside has obvious protective effects on CHF in rats. The mechanisms may be related to its regulation of cardiomyocyte apoptosis and ventricular remodelingregulation related protein expressions
    • …
    corecore